
www.manaraa.com

See	discussions,	stats,	and	author	profiles	for	this	publication	at:	https://www.researchgate.net/publication/3949492

Comparison	of	data	structures	for	storing
Pareto-sets	in	MOEAs

Conference	Paper	·	June	2002

DOI:	10.1109/CEC.2002.1007035	·	Source:	IEEE	Xplore

CITATIONS

32

READS

39

3	authors,	including:

Sanaz	Mostaghim

Otto-von-Guericke-Universität	Magdeburg

71	PUBLICATIONS			1,203	CITATIONS			

SEE	PROFILE

Available	from:	Sanaz	Mostaghim

Retrieved	on:	09	May	2016

https://www.researchgate.net/publication/3949492_Comparison_of_data_structures_for_storing_Pareto-sets_in_MOEAs?enrichId=rgreq-fd6438a1-9a87-4573-b673-b6d25455ab2d&enrichSource=Y292ZXJQYWdlOzM5NDk0OTI7QVM6MTA0NDUxMTg4NzIzNzMwQDE0MDE5MTQ1MTI5NDg%3D&el=1_x_2
https://www.researchgate.net/publication/3949492_Comparison_of_data_structures_for_storing_Pareto-sets_in_MOEAs?enrichId=rgreq-fd6438a1-9a87-4573-b673-b6d25455ab2d&enrichSource=Y292ZXJQYWdlOzM5NDk0OTI7QVM6MTA0NDUxMTg4NzIzNzMwQDE0MDE5MTQ1MTI5NDg%3D&el=1_x_3
https://www.researchgate.net/?enrichId=rgreq-fd6438a1-9a87-4573-b673-b6d25455ab2d&enrichSource=Y292ZXJQYWdlOzM5NDk0OTI7QVM6MTA0NDUxMTg4NzIzNzMwQDE0MDE5MTQ1MTI5NDg%3D&el=1_x_1
https://www.researchgate.net/profile/Sanaz_Mostaghim?enrichId=rgreq-fd6438a1-9a87-4573-b673-b6d25455ab2d&enrichSource=Y292ZXJQYWdlOzM5NDk0OTI7QVM6MTA0NDUxMTg4NzIzNzMwQDE0MDE5MTQ1MTI5NDg%3D&el=1_x_4
https://www.researchgate.net/profile/Sanaz_Mostaghim?enrichId=rgreq-fd6438a1-9a87-4573-b673-b6d25455ab2d&enrichSource=Y292ZXJQYWdlOzM5NDk0OTI7QVM6MTA0NDUxMTg4NzIzNzMwQDE0MDE5MTQ1MTI5NDg%3D&el=1_x_5
https://www.researchgate.net/institution/Otto-von-Guericke-Universitaet_Magdeburg?enrichId=rgreq-fd6438a1-9a87-4573-b673-b6d25455ab2d&enrichSource=Y292ZXJQYWdlOzM5NDk0OTI7QVM6MTA0NDUxMTg4NzIzNzMwQDE0MDE5MTQ1MTI5NDg%3D&el=1_x_6
https://www.researchgate.net/profile/Sanaz_Mostaghim?enrichId=rgreq-fd6438a1-9a87-4573-b673-b6d25455ab2d&enrichSource=Y292ZXJQYWdlOzM5NDk0OTI7QVM6MTA0NDUxMTg4NzIzNzMwQDE0MDE5MTQ1MTI5NDg%3D&el=1_x_7


www.manaraa.com

Comparison of Data Structures for Storing
Pareto-sets in MOEAs
Sanaz Mostaghim, Jürgen Teich and Ambrish Tyagi

Electrical Engineering Department
Paderborn University, Paderborn, Germany
{mostaghim, teich, tyagi}@date.upb.de

Abstract - In MOEAs with elitism, the data
structures and algorithms for storing and updating
archives may have a great impact on the CPU time,
especially when optimizing continuous problems with
larger population sizes. In this paper, we introduce
Quad-trees as an efficient data structure for storing
Pareto-points. Apart from conventional linear lists,
we have implemented three kinds of Quad-trees for
the archives. These data structures were examined
for different examples. The results presented show
that linear lists perform better in terms of CPU time
for small population sizes whereas tree structures
perform better for large population sizes.

I. Introduction

Multi-objective optimization (MO) has been investi-
gated a lot during the last years [1], and it is proven
that stochastic search methods such as evolutionary algo-
rithms (EA), simulated annealing (SA) and Tabu search
(TS) often provide the best solutions for complex opti-
mization problems. Up to now there are a few multi-
objective evolutionary algorithms (MOEA), which can
be divided into two groups. The first group contains
the MOEAs that always keep the best solutions (Pareto-
points) of each generation in an archive, and they are
called MOEAs with elitism. In the second group, there
is no archive for keeping best solutions and MOEA may
loose them during generations. MOEAs with elitism are
studied in a few methods like Rudolph’s Elitist MOEA,
Elitist NSGA-II, SPEA, PAES (see [2] for all) and SPEA2
[7].
In this paper, we address the problem of storing the
Pareto-points in the archive in such a way, which helps
to attain the desired results in the least possible time.
Hence, the need for an efficient data structure to hold
these solutions. The motivation of our work comes from
the Quad-tree data structure proposed by Finkel and
Bentley in 1974. Later Habenicht [4] adapted Quad-trees
to the problem of identifying non-dominated criterion
vectors. Finally, Sun and Steuer [6] improved [4] to make
the storage more efficient. However, no one has so far in-
vestigated Quad-tree data structures in the context of

evolutionary algorithms, i.e. MOEAs. Up to now, linear
lists were used as the archives for storing Pareto-points
in MOEAs, see e.g. [8]. We apply the Quad-tree struc-
ture from [6] to MOEAs (especially SPEA) with improve-
ments for shortcoming that it had in dealing with some
special cases. In this paper, three kinds of Quad-trees
are examined, which are called Quad-tree1, Quad-tree2
and Quad-tree3. The Quad-tree1 data structure, derived
from [4], has two disadvantages: The CPU time depends
on the order in which the vectors are added and deleting
a vector means deleting all the subtree and reinserting
all vectors again from the root, which takes a long time.
Quad-tree2, which is a new improved data structure pro-
posed by us, uses some flags for deleting the dominated
vectors in the Quad-tree1. The third data structure is
the implementation of Sun and Steuer’s Quad-tree [6].
We have extended this data structure to make it more
efficient for MOEA archives, calling it Quad-tree3 in the
following. In this paper, a comparative study of the tra-
ditional linear lists with the new Quad-trees is given, i.e.
the CPU times are compared for each data structure.
We have used different kinds of test problems, which are
applied for testing corresponding MOEAs. These tests,
taken from [8] and [3], contain 2- and 3-objective test
problems. Our results show that for larger population
sizes Quad-trees are more efficient in CPU time than lin-
ear lists.
In Section 1, we have given some brief definitions and
explain the MOEA, which is used to test different data
structures for the archive. Section 2 introduces the linear
lists and Quad-tree data structures as well as the algo-
rithms for maintaining the archive for the three variants
called Quad-tree1, Quad-tree2 and Quad-tree3. Section
3 introduces the test functions and experimental results
that show that Quad-trees perform better for problems
with larger population size. We finally give conclusions
and an outlook of further work.



www.manaraa.com

A. Multi-objective Optimization

A multi-objective optimization problem is of the form

minimize {f1(~x), f2(~x), · · · , fm(~x)}
subject to ~x ∈ S

involving m(≥ 2) conflicting objective functions
fi : <n → < that we want to minimize simultaneously.
The decision vectors ~x = (x1, x2, · · · , xn)T belong to the
feasible region S ⊂ <n. The feasible region is formed by
constraint functions.
We denote the image of the feasible region by Z ⊂ <m

and call it a feasible objective region. The elements of Z
are called objective vectors and they consist of objective
(function) values ~f(~x) = (f1(~x), f2(~x), · · · , fm(~x)).
A decision vector ~x∗ ∈ S is Pareto-optimal if
there does not exist another ~x ∈ S such that
fi(~x) ≤ fi(~x∗) for all i = 1, · · · ,m and fj(~x) <
fj(~x∗) for at least one index j. An objective vector is
Pareto-optimal if the corresponding decision vector is
Pareto-optimal.

B. The Strength Pareto Approach

The MOEA we used here to test the different data
structures is the Strength Pareto Approach (SPEA) as
introduced by Zitzler and Thiele [8]. This algorithm
introduces elitism by explicitly maintaining an external
population (archive). The archive is used to evaluate
the individuals in the population and stores the non-
dominated solutions. At every generation, newly found
non-dominated solutions are compared with the existing
archive and the resulting non-dominated solutions
are preserved. Figure 1 shows the structure of this
evolutionary algorithm.

II. DATA STRUCTURES AND
ALGORITHMS

A. Linear List Approach

A linear list is the most simple way to implement an
archive. But if we want to maintain the archive of Pareto-
points as a linear list, we have to compare every decision
vector in the population with every decision vector in
archive in worst case. In SPEA, Pareto-points (objective
vectors) are stored in an array. In this archive, if a can-
didate is not dominated and if it also doesn’t dominate
any vector in the archive, it is added to the end of the
archive. On the other hand, if the new vector ~x is domi-
nated by another vector ~y in archive, then ~x is rejected.
If ~x dominates ~y, then all such ~ys are discarded. Hence,

SPEA Algorithm
BEGIN

Step 1: Initialization: Generate an
initial population and initial empty external
set (archive).

Step 2: Update of archive: Copy all
individuals whose decision vectors are
non-dominated to archive (These individuals
are from population and archive, if it is
not empty). Remove individuals from archive
which are dominated by the new individuals.

Step 3: Fitness assignment: Calculate the
strength of each individual in archive. Calculate
the fitness of each individual in archive
and population.

Step 4: Selection: Select two individuals
from population and archive at random.
The individual with better fitness value is selected.

Step 5: Recombination : ...
Step 6: Mutation : ...
Step 7: Termination : ...

END

Fig. 1. SPEA algorithm.

deletion is easy whereas insertion is costly.

B. Quad-tree Approach

A Quad-tree [4] is a tree based data structure for storing
objective vectors. Each node is a vector with m elements
and can have a maximum of 2m sons, which are defined
by a successorship. The Quad-tree is a domination-free
tree. This means that the nodes in this tree can not dom-
inate each other. For inserting a new vector, there are
always two questions to be answered:
1- Is the new vector dominated by a node in the Quad-
tree?
2- Can any node in the Quad-tree be dominated by the
new vector?
In order to explain the algorithm for insertion and re-
placement, some definitions are required:
k-Successor: A node ~x is called k -successor of node ~y
where

k =
m∑

i=1

ki2m−i (1)

and the successorship is expressed by a binary string:

ki =
{

1 if xi ≥ yi

0 if xi < yi
(2)

k-Son: Node ~x is k -son of node ~y, if ~x is a k -successor
of ~y and also the direct son of ~y.
k-Set: Si(k) is a set of i in k-successors(i is 0 or 1):

S0(k) = {i|ki = 0, k = (k1, k2, ..., km)2} (3)
S1(k) = {i|ki = 1, k = (k1, k2, ..., km)2} (4)



www.manaraa.com

Figure 2 shows an example of a simple Quad-tree for
m = 3. The successorship of the son of the root is written
by a binary string. For example, the vector ~x1 = (5 5 23)
has the successorship 001 to the root ~y = (10 10 10). It
is hence called a 1-successor of ~y. Vector ~x2 = (15 11 5)
is a 6-successor of ~y.

 8
15 
 5

16
12
 8

 1
 1
18

17
 0
15

 5
11
15 5

 5
23

10
10
10

100 110010001 011 101

Fig. 2. A Quad-tree

Assuming without loss of generality, that all objectives
in our MO optimization problems are to be minimized.
In a domination-free Quad-tree, there exist no branches
with the successorship 0 and 2m, because nodes with k
equal to 0 will by definition dominate the root and the
nodes with k equal to 2m will always be dominated by
the root.
When processing a vector for the possible inclusion in a
domination-free Quad-tree, the vector is either discarded
as being dominated by a vector already in the Quad-
tree or it is inserted into the Quad-tree. However, when
a vector is inserted, it may dominate other vectors in
the Quad-tree and now these vectors must be deleted.
By deleting a vector, we destroy the structure of subtree
rooted at the deleted vector. This means that all the suc-
cessors of the deleted vector must be again considered for
inclusion in the Quad-tree. The corresponding algorithm
is shown in Figure 3. Assume ~x is going to be inserted
to the tree with root ~y.
The main difference in the following variants of Quad-
trees is the way in which vectors are processed for pos-
sible inclusion in the Quad-tree in order to maintain
it domination-free. A criterion vector is admitted to a
domination-free Quad-tree, if and only if, it is not dom-
inated by any of the vectors already in the Quad-tree.
Moreover, when admitted to the Quad-tree, all criterion
vectors in the Quad-tree dominated by the new entry are
identified and deleted. According to the above algorithm
Quad-trees have two disadvantages: The first is that they
are dependent on the order of inserting vectors into it. It
means that if we want to make a Quad-tree from a list,
we can have two different trees with the same list for dif-
ferent orders. The second disadvantage is that deleting a

Quad-tree1 Algorithm
BEGIN

Step 1: let ~y be the root of tree.
Step 2: calculate k such that ~x is

k-successor of ~y.
If k = 2m or if xi = yi,∀i ∈ S0(k),

~x is dominated by ~y, STOP.
If k = 0, delete ~y, ~y is dominated by ~x.

Step 3: for all ~z, such that ~z is a l-son of ~y,
l < k and S0(k) ⊂ S0(l):
TEST1:
check if ~x is dominated by ~z or the
sons of ~z.
if ~x is dominated, STOP.
else do TEST1 for the sons of ~z.

Step 4: for all ~z, such that ~z is a l-son of ~y,
k < l and S1(k) ⊂ S1(l):
TEST2 :
check if ~x dominates ~z or the sons of ~z.
if ~z or one of its sons are dominated,

delete them.
else do TEST2 for the sons of ~z.

Step 5: if a k-son of ~y already exists,
replace ~y by the k-son and goto step2.

else ~x is the k-son of ~y.
END

Fig. 3. Quad-tree1 Method.

node means deleting all its subtrees and reinserting them
again from the root. That will take a lot of time com-
pared to a linear list. We therefore propose the following
variant, Quad-tree2 in which the problem of deletion is
improved.
In Quad-tree2, the dominated node is not deleted, but
it is marked as deleted by a flag and its subtree is tra-
versed, setting the flag for dominated nodes. So, the tree
is not temporally domination-free, and must be cleaned
after each insertion step. This algorithm makes the dele-
tion process faster, because for each insertion we don’t
need to reinsert all the subtree and then repeat it for
dominated vectors in the subtree. The algorithm of
Quad-tree2 is shown in Figure 4.
In our third variant called Quad-tree3 [6], the deletion
problem is solved in another way, which is described in
the DELETE routine. This algorithm is shown in Figure
5 and the routines are as below:
DELETE(~z): This routine deletes the node ~z. If the
subtree is not empty, the lowest numbered son of ~z is as-
signed to be the new root of the subtree. So, the nodes in
subtrees that are not in the lowest number subtree must
be reinserted again. It is obvious that the lowest number
son of a node can always be the root for other sons, it
is at least better in first elements (objectives). For ex-
ample, in Figure 2, the 1-son of the root, (5 5 23), can
also be the root for the other sons, because it is at least
better in the first two elements than the other sons.



www.manaraa.com

Quad-tree2 Algorithm
BEGIN

Step 1: let ~y be the root of tree.
Step 2: calculate k such that ~x is k-successor of ~y.
If k = 2m or if xi = yi,∀i ∈ S0(k),

~x is dominated by ~y, STOP.
If k = 0, ~y must be deleted, ~y is dominated by ~x:

Mark ~y as deleted
for all sons of ~y, calculate k such that ~x is
k-successor of ~y →son:
If k = 0, Mark them as deleted
clean all vectors that are marked deleted
goto step1

Step 3: for all ~z, such that ~z is a l-son of ~y,
l < k and S0(k) ⊂ S0(l):

TEST1: check if ~x is dominated by ~z or sons of ~z.
If ~x is dominated, STOP.
else do TEST1 for the sons of ~z.

Step 4: for all ~z, such that ~z is a l-son of ~y,
k < l and S1(k) ⊂ S1(l):

TEST2: check if ~x dominates ~z or the sons of ~z.
If ~z or one of its sons are dominated,
they must be deleted :
Mark them as deleted.
Do the same for all sons of ~z
If ~x dominates them, mark them as deleted

clean all vectors that are marked deleted
Step 5: if a k-son of ~y already exists,

replace ~y by the k-son and goto step2.
else ~x is the k-son of ~y.

END

Fig. 4. Quad-tree2 Method.

REPLACE(~c,~s): In this routine we replace ~c with ~s,
because ~c is dominated by ~s. So the successorship in the
subtree is not any more valid and they must be reconsid-
ered again.
REINSERT(~c,~s): This routine finds the right position
in the subtree rooted at ~c at which to insert ~s and its
successors. When reinserting vectors, those in the lowest
level of the subtree rooted at ~s are processed first.
RECONSIDER(~c,~s): The only difference between this
routine and REINSERT is that in this routine the nodes
in the subtree of ~c, which must be reinserted from ~s, may
be dominated by ~s.
So, first of all, k must be calculated such that ~s is a
k-successor of ~c, then the vectors in ~c that are domi-
nated by ~s must be discarded and the vectors in ~s that
are dominated must be deleted. Then if ~c has a k-son,
REINSERT(~c →son, ~s) else move ~s to the position of
k-son of ~c in the Quad-tree. The main idea of this algo-
rithm comes from [6]. We have added this part to this
routine in order to make it efficient for use within MOEA.

More details and Examples of these Quad-trees are ex-
plained in [5].

Quad-tree3 Algorithm
BEGIN

Step 1: let ~y be the root of tree.
Step 2: calculate k such that ~x is k-successor of ~y.

If k = 2m or if xi = yi, ∀i ∈ S0(k),
~x is dominated by ~y, STOP.

If k = 0, delete ~y, ~y is dominated by ~x.
REPLACE(~y, ~x)
RECONSIDER(~x, ~y →son)
reinsert all of the sons of ~y again from ~x.

Step 3: for all ~z, such that ~z is a l-son of ~y,
l < k and S0(k) ⊂ S0(l):

TEST1: check if ~x is dominated by ~z or sons of ~z.
if ~x is dominated, STOP.
else do TEST1 for the sons of ~z.

Step 4: for all ~z, such that ~z is a l-son of ~y,
k < l and S1(k) ⊂ S1(l) :

TEST2 :check if ~x dominates ~z or the sons of ~z.
if ~z or one of its sons are dominated,

if ~z is dominated by ~x, DELETE(~z)
check also all sons of ~z and if necessary

else do TEST2 for the sons of ~z.
Step 5: if a k-son of ~y already exists,

replace ~y by the k-son and goto step2.
else ~x is the k-son of ~y.

END

Fig. 5. Quad-tree3 Method.

III. EXPERIMENTS

First, we explain how Quad-trees can be implemented
within EAs, i.e. the SPEA algorithm [8]. Next we in-
troduce the test functions used in the experiments and
present CPU time comparisons for these data structures.

A. Quad-trees In SPEA

We have integrated all the Quad-tree variants into the
SPEA algorithm. Quad-trees are used as the data struc-
ture for the archive, not for the population. In each
generation, each individual of the actual population is
inserted into the tree. It is obvious that the only non-
dominated vectors do remain in the Quad-tree, because
the Quad-tree is a domination-free tree.

B. Test Functions

There exist many test functions that are used for testing
MOEAs, e.g. those introduced in [3] and [8]. They
are built with consideration to difficulties in MO like
converging to the Pareto-optimal front and maintaining
diversity within population that may prevent MOEAs
from finding Pareto-optimal solutions. We have also
used these functions, called TFi, which are 2- and
3-objective problems. These functions are shown in
Table I. In this table, h and g are defined as below:

minimize f(~x) = (f1(x1), f2(x))



www.manaraa.com

subject to
f2(~x) = g(x2, · · · , xn) · h(f1(x1), g(x2, · · · , xn))
where ~x = (x1, · · · , xn).

TABLE I

TEST FUNCTIONS

TFi Function xi

TF1 f1(x1) = x1 n = 30,

g(x2, · · · , xn) = 1 + 9(
∑n

i=2
xi)/(n− 1) xi ∈ [0, 1]

h(f1, g) = 1−
√

f1/g

TF2 f1(x1) = x1 n = 30,

g(x2, · · · , xn) = 1 + 9(
∑n

i=2
xi)/(n− 1) xi ∈ [0, 1]

h(f1, g) = 1− (f1/g)2

TF3 f1(x1) = x1 n = 30,

g(x2, · · · , xn) = 1 + 9(
∑n

i=2
xi)/(n− 1) xi ∈ [0, 1]

h(f1, g) = 1−
√

f1/g − (f1/g) sin(10πf1)

TF4 f1(x1) = x1 n = 30,

g(x2, · · · , xn) = 1 + 9(
∑n

i=2
xi)/(n− 1) xi ∈ [0, 1]

h(f1, g) = 1− (f1/g)2 − (f1/g) sin(10πf1)

TF5 f1(x1) = x1 n = 10,
g(x2, · · · , xn) = x1 ∈ [0, 1],

1 + 10(n− 1)
∑n

i=2
(x2

i − 10 cos(4πxi)) x2, · · · , xn ∈
h(f1, g) = 1−

√
f1/g − (f1/g) sin(10πf1) [−5, 5]

TF6 f1(x1) = 1 + u(x1) n = 11,

g(x2, · · · , xn) =
∑n

i=2
v(u(xi)) x1 ∈ {0, 1}30,

h(f1, g) = 1/f1 x2, · · · , xn ∈
{0, 1}5

TF7 f1(~x) = (x1 − 1)4 + (x2 − 1)2 + (x3 − 1)2 n = 3,
f2(~x) = (x1 + 1)2 + (x2 + 1)4 + (x3 + 1)2 xi ∈ [−1, 1]
f3(~x) = (x1 − 1)2 + (x2 + 1)2 + (x3 − 1)4

TF8 f1(~x) = (1 + x3) cos x1π/2 cos x2π/2 n = 3,
f2(~x) = (1 + x3) cos x1π/2 sin x2π/2 xi ∈ [0, 1]
f3(~x) = 3(1 + x3) sin x1π/2

TF9 f1(~x) = (1 + x3)(x
3
1x2

2 − 10x1 − 4x2) 1 ≤ x1 ≤ 3.5,
f2(~x) = (1 + x3)(x

3
1x2

2 − 10x1 + 4x2) −2 ≤ x2 ≤ 2,
f3(~x) = 3(1 + x3)x

2
1 0 ≤ x3 ≤ 1

C. Parameter Setting

The linear list and Quad-tree implementations are
used for studying six 2-objective and three 3-objective
continuous functions (TF1, ..., TF9). Each simulation
run was carried out using the following parameters:
Number of generations : 400
Population size : 100, 500, 1000, 5000, 10000
Number of generations : 30 (for 3-objective functions)
Population size : 100, 1000, 5000, 10000, 15000 (for
3-objective functions)
Cross over probability : 0.8
Mutation probability : 0.01

For more details see [5].

D. Experimental Results

Figures 6-7 show the average CPU times of two differ-
ent test functions in different runs and seeds for different
populations sizes 1 for the linear list and the Quad-tree
algorithms. In these Figures, Array is the symbol of the
linear list implementation, Tree1, Tree2 and Tree3 are for
SPEA with Quad-tree1, Quad-tree2, and Quad-tree3.

Fig. 6. Average CPU time of test function TF1 for different
population sizes

Fig. 7. Average CPU time of test function TF6 for different
population sizes

The results of Average CPU time and the ratio of Quad-
trees’ CPU times to linear lists’ CPU times (Ti/A), for
each 2-objective test function and averaged over 4 differ-
ent seeds are shown in Table II. According to the tables
and graphs, depending on the problems and test func-
tions, Quad-trees use less CPU times for population sizes
of more than 2500 individuals for the convex test func-
tions, and of more than 1000 individuals for the other test
functions. Among the Quad-trees, Quad-tree1 requires
longer CPU time for an equal number of iterations with

1We evaluate CPU times depending on the population size (not
the archive size), because in each generation, each individual is
(tentatively) inserted into the archive.



www.manaraa.com

population sizes up to 5000 individuals. But for popu-
lation sizes larger than 5000, the classical data structure
Quad-tree1, performed the best. When comparing the
linear list with the Quad-tree implementation, we see
that for the 2-objective tests, Quad-tree3 has the best
behavior, being almost 10 times better than linear lists
for larger population sizes, but up to factor of 3 worse
than linear lists for small population sizes where the lin-
ear list data structure with O(N2) complexity, where N
is equal the population size, is the best choice.

TABLE II

AVERAGE CPU TIMES IN SECONDS FOR DIFFERENT

POPULATION SIZES OF THE 6 2-OBJECTIVE FUNCTIONS (Ti/A

IS THE RATIO OF TREEi’S CPU TIME TO ARRAY’S CPU TIME)

N Array Tree1 Tree2 Tree3 T1/A T2/A T3/A

100 30.68 332.9 232.83 118.99 10.85 7.59 3.88
500 294.71 3629.58 1859.02 1133.81 12.32 6.31 3.85
1000 818.54 4952.93 2840.45 1937.81 6.05 3.47 2.37
5000 11299.92 2774.41 2826.68 2794.71 0.25 0.25 0.25
10000 42274.91 4898.97 5100.49 5160.54 0.12 0.12 0.12

100 24.21 120.6 91.05 74.68 4.98 3.76 3.08
500 186.61 244.68 253.87 234.2 1.31 1.36 1.26
1000 537.58 418.46 446.45 456.18 0.78 0.83 0.85
5000 10328.27 2066.73 2218.92 2326.68 0.2 0.21 0.23
10000 40091.71 4142.21 4385.24 4517.08 0.1 0.11 0.11

100 31.82 370.47 234.36 126.56 11.64 7.37 3.98
500 318.48 4389.25 2515.66 1387.84 13.78 7.9 4.36
1000 916.46 9097.29 5283.9 3178.6 9.93 5.77 3.47
5000 12234.25 5383.5 4484.65 4300 0.44 0.37 0.35
10000 44055.57 6163.18 6212.26 6195.52 0.14 0.14 0.14

100 23.35 105.75 99.5 75.45 4.53 4.26 3.23
500 216.72 586.77 363.53 387.83 2.71 1.68 1.79
1000 626.88 745.08 640.92 580.44 1.19 1.02 0.93
5000 10524.19 2176.9 2336.12 2393.23 0.21 0.22 0.23
10000 40317.49 4355.43 4707.76 4655.86 0.11 0.12 0.12

100 20.2 41.66 44.25 45.8 2.06 2.19 2.27
500 176.19 207.11 216.82 228.72 1.18 1.23 1.3
1000 546.19 417 437.26 459.84 0.76 0.8 0.84
5000 10415.29 2104.2 2223.27 2375.99 0.2 0.21 0.23
10000 40410.43 4244.57 4454.04 4632.82 0.11 0.11 0.11

100 14.5 76.92 69.04 36.82 5.3 4.76 2.54
500 161.5 209.84 201.86 165.53 1.3 1.25 1.02
1000 555.29 345.7 342.95 324.13 0.62 0.62 0.58
5000 12090.32 1430.13 1451.23 1543.43 0.12 0.12 0.13
10000 47489.3 2728.1 2819.97 3038.54 0.06 0.06 0.06

Table III, shows the average CPU time and Ratio of CPU
times of Quad-tree3 and linear list implementations on 3-
objective test function TF8. For small population sizes,
Quad-tree3 behaves more than 10 times slower than the
linear list implementation. They would be faster for pop-
ulation sizes more than 12000 (in the average case 2 times
faster).

IV. CONCLUSIONS AND FUTURE WORK

We have studied and compared Quad-trees as a data
structure for the archive in MOEAs with linear lists,
which are used in SPEA. It has been shown that Quad-
trees take less CPU time in comparison to linear lists for

TABLE III

AVERAGE CPU TIMES IN SECONDS FOR DIFFERENT

POPULATION SIZES OF THE 3-OBJECTIVE FUNCTION

(TF8)(T/A IS THE RATIO OF TREE’S CPU TIME TO ARRAY’S

CPU TIME)

N Array Tree T/A

100 4.31 68.06 15.77
1000 340.44 3312.97 9.74
5000 8615.94 84137.38 9.76
10000 32095.86 307151.1 9.57
15000 2037222.4 1120085.8 0.549

large population sizes. Hence, as a rule of thumb, we rec-
ommend the use of Quad-trees for optimal performance
with higher-dimensional Pareto-Sets. This is often the
case when optimizing continuous problems. For prob-
lems with discrete Pareto-fronts, the conventional linear
list implementation might be the superior choice.
Also, we would like to investigate and compare data
structures different from Quad-trees and linear lists, i.e.
partial order graph. Finally, for each of the combined
data structures, other types of operations such as fitness
computation (e.g. Pareto-ranking) are currently investi-
gated. Obviously, also this operation might influence the
choice of the used data structure.

References
[1] D. Corne, M. Dorigo, and F. Glover. New Ideas in Optimiza-

tion. Mc Graw Hill, 1999.

[2] K. Deb. Multi-Objective Optimization using Evolutionary Al-
gorithms. John Wiley & Sons, 2001.

[3] K. Deb, L. Thiele, M. Laumanns, and E. Zitzler. Scalable test
problems for evolutionary Multi-objective optimization. Kan-
gal report number 2001001, Kanpur Genetic Algorithms Labo-
ratory(KanGal), Indian Institite of Technology Kanpur, India,
August 7, 2001.

[4] W. Habenicht. Quad Trees, a data structure for discrete vector
optimization problems. Lecture Notes in Economic and Math-
ematical Systems, 209, Springer-Verlag, pages 136–145, Berlin,
1983.

[5] S. Mostaghim, J. Teich, and A. Tyagi. Comparison of Different
Data Structures for Storing Pareto-points Date report number
02, Electrical Engineering Laboratory (Datentechnik), Pader-
born University, paderborn, Germany, 2001.

[6] M. Sun and R.E. Steuer. Quad Trees and linear list for identi-
fying nondominated criterion vectors. In INFORM Journal on
Computing, Vol. 8, No. 4, pages 367–375, 1996.

[7] E. Zitzler, M. Laumanns, and L. Thiele. SPEA2: Improving
the Strength Pareto Evolutionary Algorithm. TIK-report 103,
may, 2001.

[8] E. Zitzler and L. Thiele. Multiobjective evolutionary al-
gorithms: A comparative case study and and the strength
pareto approach. IEEE Trans. on Evolutionary Computation,
3(4):257–271, November 1999.


